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ABSTRACT
This paper presents a generalization of results on convergence and robustness of
discretization schemes for nonlinear filtering obtained by Kushner. This is made
possible by a general theorem on the convergence of semigroups of operators on a
Banach space, which gives sufficient conditions for a semi-discretization scheme to
remain convergent, omnce the time is implicitly discretized. As a consequence, suf-
ficient conditions can be given for selecting space discretizations of the state pro-

cess generator to construct computable nonlinear filters converging to the optimal

one.



1. INTRODUCTION

The motivation for the present work arises from the following well-known problem
in nonlinear filtering. Let (ig) be a Rd—valued diffusion process with generator A
and let (Wt) be an independent R™valued standard Brownian motion, both defined on
(,F,P). Let

T '
Y = ({ g(X)ds + W, £>0, (1.1)
where g:Rd+Rp. Compute recursively the conditional expectations-f(f(i£)le, 0<s<t)
for some "sufficiently large” class of functions f defined on Rd. Boundedness and
smoothness assumptions on the coefficients of A will be given later. We assume from
now on that giELm(Rd), i=l,...,m.

A convenient representation for the desired conditional expectations is given by
the Kallianpur-Striebel formula [12]. Define on another probability space (Q,F,P) a
diffusion (Xt) with the same distribution of (it). Then

Bl£(x exp( [ (x ay_ - 5 [Flacx ) |%ds) ]

E(f(’it)lYS, 0<s<t) = 0 0 , (1.2)

top 1t 9
Elexp(f g (X )AY_ - 5 [ [g(x ) |"ds) ]
0 0

which reduces the problem to the computation of integrals on the paths of (Xt) (the
stochastic integral, for each path of (Xt), is a Wiener integral computed on the
given path of (Yt)). By differentiating the numerator a weak stochastic partial dif-
ferential equation is obtained for a multiple of the conditional probability measure

9y usually called the Zakai equation [32]

* T
= A dt + . 1.3
dqt q qt g dYt | ( )

Of course, if we want to solve (1.3) recursively “on line"” on a digital computer
the best we can do is to provide well-behaved discretization algorithms in both space

and time.



It is useful to design algorithms which discretize (1.3) but still retain the
representation (1.2), merely changing the process (Xt) involved. This could be
obtained by replacing the diffusion by a continuous-time finite—-state Markov chain
with generator Ah’ which of course is of finite-difference type (the simplest example
is provided by Kushner [17}). But it continues to hold if time is implicitly discre-
tized and the stochastic Trotter product formula [5,2] is used, thereby obtaining the

equation

T, h,A B T . 1y 42,0 hyA B
(1 - AAh)q(k+l)A = exp(g (Y<k+1)A YkA) 3]g] A)qkA , k=0,1,... (1.4)

This scheme has been first obtained by Clark [5], by discretizing implicitly
time in the "robust” version of (1.3). For us it is more interesting to know that

the solution of (l.4) can be written essentially as in (1.2) replacing (Xt) by a

h, A

discrete-time Markov chain (XkA

) with transition matrix (I—AA;I;)_l [21]. This rela-

tes the convergence of the approximation scheme (1.4) to the weak convergence of

h
(xh

) to (X ) when h,A>0 (h is thought as a mesh parameter of the space discretiza-
kA t 8 P

tion grid). But this is known to be ensured by the convergence of the discrete
semigroup described by the free behaviour of equation (1.4) (i.e., when Y=0) to the
semigroup generated by A [15]. The relevant point is that we would like to establish
convergence for h and A going to zero independently. Our main Theorem 2.4, given in
the following section, gives sufficient conditions for this only in term of Ah and A.
This is reasonable, in that the matrices Ah are the parameter of the scheme (1.4) and
they have to be chosen with the best possible band structure, so as to solve as
quickly as possible the equation (1.4), without inverting I-A AE [1]. It turns out
that these conditions are slightly stronger than those given by the Trotter—Kato-
Kurtz theorem [28, 12, 14] for the convergence of the semigroup generated by Ah to
that generated by A, therefore confirming in an abstract setting that the implicit

discretization of time allows an independent choice of discretization steps in space



and time, respectively [25]. Thus Theorem 2.4 could be of some interest indepen-
dently of the filtering problem; of course it can be successfully applied to show
convergence for different approximate filters which usually do not retain any proba-
bilistic meaning, like those built by Galerkin methods [7].

In Section 3 we review the already cited results connecting convergence of
Markov (Feller-Dynkin) semigroups with weak convergence of their sample paths. With
Theorem 2.4 and this type of results, in Section 4 we obtain convergence results for
the functionals involved in (1.2), computed averaging on the paths of (X:AA). For
this it is useful to obtain for those functionals a Lipschitz condition in Y, indepen-
dently of (h,A), thereby extending previous results for the Kushner space discretiza-
tion scheme [21]. This is done by the arguments used in [18], that is integration by
parts in (1.2) and some martingale estimates (which require conditions on g, too).
In Section 5 this result is shown to imply the robustness of the approximate filters
(1.4), in that if they are forced by

€ e €
v = / g(X)ds + W, t30 (1.5)
0

where (ig, WE) converges weakly, as e+0, to (§£, wt), nonetheless the joint distribu-—
tion of (if) and the (h,A)-approximate filter computed on the paths of (YE) converges
weakly, as (h,A,e)+0, to the "ideal” one given by (1.2) and (2.2).

The final section deals with two short examples. The first is Kushner's scheme,
the other one a variation of that which is intended to show that different choices
are possible, depending on the particular structure of the diffusion model. The suf-
ficient conditions are easily checked in any case, but to avoid cumbersome notations
we limit ourselves to the case d=1. However, when the dimension of the state space
increases, the reasonable choices for the approximating chains increase, surely

influencing the speed of computation. Much more work remains to be done on these

issues. Anyway boundedness conditions on the coefficient of the diffusion are



needed, because the state space is not compact. This suggests that the convergence
and robustness results obtained, which holds in general for continuous Feller-Dynkin
processes on locally compact state spaces, will be more meaningful for nondegenerate

diffusions on compact Riemannian manifolds.



2. THE ABSTRACT CONVERGENCE THEOREM

First of all we recall the Hille-Yosida theorem. 1Let L by any Banach space.
THEOREM 2.1. A linear operator A on L is the infinitesimal generator of a (strongly
continuous) semigroup of operators on L if and only if: D(A) is dense in L and, for

A>0 I-AA is invertible on the whole L, with the inverse JA which is a contraction.

We remark that Hille's proof [10] is just based on the convergence of the impli-

[t/n]

cit time-discretization scheme (governed by JA

) to the generalized solution of
the corresponding Cauchy problem with problem with operator A, when A goes to zero.
Yosida [31] approximates this solution with the exponentials of the bounded operators

A = A_I(JA—I). Of course, because A generates a unique semigroup (which will be

A
[t/a]

called {eAt}) the contraction-valued functions of time JA and eAAt have the same

asymptotic behaviour as A+0. We will utilize a generalization of this result, due to
Kurtz [14], to prove Theorem 2.4 by using the more convenient Yosida-type argument.

Let us put ourselves in the setting of [14] which allows to consider convergence
of Markov processes defined on different state spaces. Suppose that for each h>0,

Lh is a Banach space and there exists a bounded map Ph:L+Lh such that for each feL

limMthH = |Ifll, which in turns imples that HPhN<M for some M>O., On each Lh an infi-
h->0
nitesimal generator Ah of some contraction semigroup is specified. For numerical

applications L will be always finite—~dimensional so that Ah will be bounded, but

h
this is not assumed now.
At At

We say that the family of semigroups {e }, h>0, converges to {e } as h»0 if,

for any feL and T>0
At
t
lim sup e h th - PheA fl =0 (2.1)
h+0 te[0,T]

Conditions for (2.1) to hold are given by the Trotter—-Kato- Kurtz theorem which

is reported below.



THEOREM 2.2, The following are equivalent:
t At
i) {e } converges to {e } for h-»0;

ii) for each feL

. -1 -
llmH(I—Ah) th - Ph(I—A)

h+0

ley=0 (2.2)

iii) for each f in a core S of A there exists fheD(Ah) such that

iig Hfh - thﬂ \ lIAhfh - PhAfH = ( (2.3)

We recall that a core S of the generator A is a linear manifold included in D(A)
such that A is the closed extension of A|S. The most used cores are linear manifolds
dense in L which are invariant under eAt, for t>0.

Theorem 2.2 will be a basic tool in the sequel, in that both conditions ii) and
iii) will be used to prove Theorem 2.4. The fact that ii) » i) is due to Trotter [28],
whereas the converse to Kato [12]. Condition iii) have been introduced by Kurtz
[14].

If an implicit discretization scheme is applied to the evolution equation
governed by Ah’ the discrete contraction semigroup JE,A = (I—AAh)_k is obtained on
the space L
{J[tgA]} converges to {eAt} in the same sense of (2.1), as (h,A)+»0. As mentioned before

h,
. ) , . . . ) . [t/a]
we consider continuous—-time semigroups "asymptotically equivalent” to {Jh A

he Our objective is to find sufficient conditions under which
} by means

of the following estimate [14]. Define the bounded operator on Lh

-1
= A -1 2.4
A, 8 Gy, ™ (2.4
which is easily shown to generate a contraction semigroup.

THEOREM 2.3. For any feL, t>0 and >0

A t

[t/A] - e h, A ) thﬂ < ZtHAh Athﬂ A Cg%~Hthﬂ + (€t+A)HAh AthH). (2.5)

H(J
h,a et



We are now ready to prove the promised convergence theorem.

THEOREM 2.4. Llet us suppose that for any f in a core S of A, theD(Ah) (at least for

h sufficiently small) and

i - = .
1im HAhth PhAf 0 (2.6)
h+0

Then, for any feL and T>O

lim sup HJ[t/A]

p e e - e eAtey = 0 (2.7)
(h,n)+0 te[0,T] ’

h

Proof. By Theorem 2.2 it is enough to prove that for any feL

-1 1

lim  #(I-A, ) P f — P (I-A) flI = O. (2.8)
(h, )20 h, A h h
Being HPhN<M and H(I—Ah A)_1H<1, it is enough to prove (2.8) for feS. Note that
3

it is possible to write

-1
= A (I- = 2.9
Ah’A h(I AAh) Ath’A (2.9)

so that, for any geD(Ah)

-1 -1.-1 -1 -1
(I—Ah’A) g = (I-A (I-0A) ) g = [(I-(&+1)A ) (I-84) ] g =
-1 _ _
—(L%AH)%Q (PA%)g~\u+hh@ m%y
Therefore, if feS
(- ) ' f-p (-8 Ye1 < s AP EI+
h,A h h A1l,hh h
- I < Al I+ - £ .
+ HJA+l’hth PJ £ AlA P, f uJA+1’hth P.J, (2.10)

By (2.6) it is clear that for each feS there exists K>0 such that, for h>0



HAhthH<K

(2.11)

so that the first term in the r.h.s. of (2.10) goes to zero as (h,A)+0. The same

assumption implies that, for feS

lim WAa+I)A P £ - P AfI =0
(ho2ys0 APnt T P

and by Theorem 2.2 the norm of

1

(I*(A+1)Ah)~lth - B (-0 = £ -pJf

P
A+1,h h h"1

goes to zero as (h,A)>0. This proves that for any feL, T>0

A t

At
lim sup lle b, th - Pe fil =20

(h,n)>0 te[O,T] h

To get (2.7) it is enough again to consider feS in (2.5).

HPhH<M and, by (2.9) and (2.11), that

P £l =\ f1 < <
"Ah,A hf Jh,A Ph Ahth” K, feS,

(2.12)

(2

Use the fact that

.13)

(2.14)

to show that the r.h.s. of (2.7) is uniformly bounded with respect to h and can be

made uniformly small for te[O,T] with an appropriate choice of € and taking A suf-

Ah At
ficiently small. So the fact that {e ’ }
[c/a]

{Jh,A

has the same asymptotic behaviour as

The condition (2.6) is slightly stronger than the mere convergence of the

At

} (as both h and A goes to zero) is obtained and (2.7) is finally established.

At
semigroups {e } to {e } in that in (2.3) the particular choice fh = th is made.

But it is interesting that this condition involves only Ah; it does not require to

compute J , that is to solve (I—AAh)f = g for all possible geL instead that for
h, A h’

one g at a time,



3. FELLER-DYNKIN SEMIGROUPS AND WEAK CONVERGENCE

Let us draw the consequences of Theorem 2.4 for Markov (Feller-Dynkin) semi-
groups. Let E be a locally compact Polish space and C(E) be the space of continuous
functions which go to zero at infinity (w.r.t. the one-point compactification of E).
We recall that a linear operator A on C(E) is the infinitesimal generator of a
Feller-Dynkin (contraction) semigroup if [6]:

a) D(A) is dense in é(E);

b) range (sI—A)=é(E), s>0;

c) 1leD(A) and Al=1;

d) if £ has a maximum at x, then Af(x)<0.

In this case, given any probability measure Py on E, one can build a process

(X.) on the space D[O,w;E] of cadlag E-valued functions [30] such that for any feé(E)
At
E(£(X) Xy = %) = (e77£) (%) (3.1)

h 1 .
and XO as law pO

For n=1,2,..., let (Xz) be a process on some probability space with sample paths
in D[O,w,E], adapted with respect to an increasing family of og-algebras (F?, t£20).
The following is a sufficient criterion for the weak convergence of (XZ) to (Xt)’

whose proof can be found in {17].

THEOREM 3.1 TIf X. converges weakly to X  for n»>« and for any fsé(E), s,t20

0 0

Lim BC[EGEGE, D[P - o a®)]) = o (3.2)

n+w

then the finite-dimensional distributions of (XE) converge to those of (Xt)' If

moreover for any geé(E)

2, n
sup sup E((g(X" )-g(x™)) [F. ) <c (u) a.s. (3.3)
t30 O<s<u t+s t t n



where lim 1im cn(u) = O then (X:) is tight and therefore (X:) converges weakly to
u>0) n
(x.) in D[0,=;E].

For h>0 let E, be a locally compact Polish space and " be a continuous mapping

h

of E into E (if E

N j, is not compact, it must be n(«)=w»). We suppose that Uhnh(Eh) is

dense in E. Then, if we define bounded linear transformations P, of C(E) into C(Eh)

h

by

(P D)) = £(n (x)), £eC(E), xek (3.4)
it is lim HthH = Ifll for any feC(E). Finally let Ah’ h>0 be the infinitesimal

h+w -~
generator of a Feller—-Dynkin semigroup on C(Eh). Let us consider for A>0, h>0

IR A_lteAt
= (I-8A) " = A [ e dt (3.5)

0

Clearly Jh A1 = 1 and £20 implies Jh Af>0 which shows by Riesz theorem that a
b b
discrete-time Markov process (ZiAA, k=1,2,...) can be built such that
h, A
(Jh,Ag)(X) E(g(z(k+l)A)|ZkA =x), k=1,2,... (3.6)
for any geC(Eh) once an initial law is prescribed for Zg’A. Let Z:’A ZTt?A]

t>0 and XE’A (Zh’A). Note that (Z?’A) is a cadlag Markov process, but no more

homogeneous: in fact for faC(Eh), t,s20

By g llersd/all Tt/ Al ey L u o (ers L )£ () (3.7)

E(f(z )|Z h, A b, A h,A

and EE%E] - EE] = E%] + & could be 0 or 1, depending on t,s,A.

The following theorem is a relevant application of Theorem 2.4 for our class of

Markov processes.

THEOREM 3.2 TLet A, Ah be as above and satisfy the hypotheses of Theorem 2.4, If Xg’

converges weakly to XO’ then (XS’A) converges weakly to (Xt) in D[O,w;E].

10

A



b

h
Proof. It suffices only to check that (3.2) and (3.3) hold, where F:’A = O{ZS’A

O<s<t}. First of all for any f in the core S of Theorem 2.4, and t,s>0

., As_ [S/A] L, As [(t+s)/A]~[t/A]_ [S/A] ,
IUh,A(t+s,t)th Phe fn<th,A th Phe fH+H(Jh,A Jh,A )thJ (3.8)
and
[(t+s)/A]—[t/A]_ [s/A] e [s/A] _ ‘ B _
”(Jh,A Jh’A )thd<JJh,A (Jh,A I)thuq(Jh,A I)thu A"Ah,Ath"

which goes to zero as (h,A)+0 by (2.14), Therefore, by Theorem 2,4, the r.h.s. of
(3.8) goes to zero as (h,A)+0. Being W, A(t,s)ll<1 for all t,s,»0 and S dense, it is

established that feC(E)

(hlz?+0 h A(t+s s)P f - Ph fM =0
b

which clearly implies (3.2). To get (3.3) let us consider again f in S: then for

t,s>»0

t+s,t)P f-P fl<l J[S/A]—I P I+ [s/a] J  -I)p fl<
p (SR F=P £ISICT ) TP g = A0, TRy

b b

[s/A] _ | As .
<“Jh,A th Phe fl+Ue f- fl+AHAh AP fi

A
and the r.h.s. converge to le Sf-f I as (h,A)+0, uniformly on O<s<u, by Theorem 2.4

and (2.14). By denseness of S it is established that for any feC(E), uniformly on t

lim lim sup HUh A(t+s,t)th~-thll = 0 (3.9)
ut0 (h,A)+0 O<s<u ?
Now compute, for geC(E)
h, s h,
ECgx g xM)2 1z ) = BEPEND 1200 0 - g5 (0) +

10a



2
- g(x)(E(g(X?Lﬁ)IZE’A= x)—g(x))éH(Uh’A(t+s,t)—I)Phg I+

t+s,t)- I
+ 2Migl H(Uh’A( s,t)-DP ¢

and by using (3.9), the desired (3.3) is easily obtained.

10b



4, APPLICATION TO FILTERING

We return to the problem stated in Introduction by identifying the "copy” of
the state process in (1.2) with the Feiler—Dynkin one of the last section. Moreover
we have now to suppose that this process is continuous (so that, at least locally, it
is a diffusion [8]). We need to introduce an extension of its infinitesimal genera—
tor, called the full generator [16], which is a possibly multivalued operator
A Lm(E)me(E) such that for

t
(g,h)ek, g(x.) - [ h(x )ds

0

is a martingale w.r.t. the increasing family of o-algebras generated by (Xt)'

Suppose now that each component of g in (l.1) is bounded, uniformly continuous
and belongs to D(K), and the products gigj, i,j=1,...,m, too. We let &é =
(Zgl,...,zgm) where Bgi stands for any element of the g;image of 8> i=l,...,m. By
integrating by parts inside the expectations of the Kallianpur—Striebel formula (1.2)
this can be expressed for any path yeCO[O,w;Rm] (continuous functions which starts

from zero) of (Yt) through the "robust" version [5]

T t e 1 & 2
E[£(Xx exp(y (1)g(X) = [y ()dg(X) -~ [ [g(X))|%ds) ]
E(£(X) [Y =y(s), 0<s<t) = 0 0
t t
Elexp(y (0)g(x,) - [ v (e)agx) -5 [ lsx)]%a)]
0 0

(4.1)

for any f bounded and measurable.
In fact, by assumption g(Xt) is a R'-valued semi-martingale whose decomposition
is given by

t
g(X) = g(X) +g (Ag) (X)ds + M (4.2)

where Mt is a continuous square-integrable martingale having the matrix-valued

increasing process [11]
11



t

i,j _ ~ _ ~ _ ~
My é [(Rggg ) (x) - g3 (x) (Bgy ) (X)) - g, () (Bg ) (X)) Jas (4.3)
L | 1
Being <M>_ 1locally bounded, R, = [ y (s)dM_ and exp(R, - = <R>,) are martingales
t t 0 S o 2 t

[24], from which the boundedness of the denominator is easily obtained for each

yeC [O,M;Rm]. By Riesz theorem this implies that for each y there exist finite

0

measures ut(y), t>0, such that

- <Ehu (y)>
E(f(xt)[Ys-y(s), O<s<t) = 2177;7573" t >0 (4.4)
where <f,u> = f f(x)u(dx) and
E
ut(y)(dX)
HC(Y)(dX) = ——— (4.5)

[ u () (dz2)
E

is a regular conditional probability measure.
Now let us suppose that, for h>O, Ah is the infinitesimal generator of a

continuous—-time Markov chain with finite state space Eh = {1,2,...,N Let

ni-

. . . . h .
associate with each state i a point xi in E and for each function on E let th be

"
N }, which is always con-

h

sidered with the sup norm. We are allowed to identify Eh with nh(Eh) and th with f,

the Nh—vector of the evaluations of f at points {x?,...,x
requiring UhEh to dense in E. For A>0 and yaCO[O,w;Rm} let us consider the implicit

time—discretization equation (l.4), which can be rewritten as

hyo  _ T A h,A

Y+1)a ~ I, Bka Gka > K7 Olseees (4.6)

BQA being a Nh—th order diagonal matrix, whose i-th diagonal element is

exp(gT(X?)(y((k+1)A)-y(kA)) - % Alg(x:)lz))-

Let us consider on some probability space the discrete—-time Markov chain

12



h,A h ' T h
(ng , k=0,1,...) with initial probability vector q, (it is supposed 1 q, = 1) and

transition matrix J

h,A

THEOREM 4.1. The solution of equation (4.6) can be expressed in the following way:
N
for any feR

k-1
- [0y heC 3 [5G H GrD - y(10) -2 lex 17D 1 @wen

2=0

T h,A
£ aqp

Proof. It requires only a substitution of (4.7) into (4.6) which yields

T T A h,A A T h,4
B B £ s B
9 4 Pa%a - Buatn,a ) ayp
k
h, A h, A T, h,A 1 h, Ay (2
= E ’ X z ’ +1)4) - y(2n)) - 5 ’
B[y ) %, DexpC 2 e O H GG ) - y(am) -5 (g D[ 78h ]

2=0

+1) A by the Markov property of (XEAA) and the projective pro-

T h
which is equal to f q(éA

perty of conditional expectations.

It can be easily shown that (4.7) gives the numerator of a Kallianpur—Striebel
type formula for an estimation problem in discrete time.

. h,A . .
We can extend the function qu to continuous time by

t t
T h,A h, T, h,A . h,A
tlq %) = E[f(x[th]A)exP(j ECHRNOLE —% I 1g(x[S/A]A)12dS)] (4.8)
0 0
if y is in Cé[O,w;E]. A similar expression holds in this case for e
<E,u (9)> = E[£f(X Dex (ft (X )9(s)ds - i-jt| (X )|2d ) | (4.9)
s Hye y ¢ P 5 g s y 5 ; g(X, s .

h,A h,A T h,A .
Now let Py (y) = q, (y)/Q1 qt’ (y)). The following theorem states the relevant

consequence of Theorem 2.4 for our problem.

THEOREM 4.2. Let us suppose that the convergence condition (2.6) holds and

13



converges weakly to the law of X , as h+0. Then, for each yeCé[O,w;ﬁm], T>0 and

pO 0 b

f bounded and uniformly continuous

lim sup |prE’A(y) - <f,Ht(y)>| =0 (4.10)
(h,0)+0 tel0,T]

Proof. For each y as above define the function ¢1:D[O,w;E]+D[O,w] as

top 1t 2
8, () (e) = exp( [ g (x(s))§(s)ds = 5 [ |g(x(s))["ds) (4.11)
0

0
and observe that for each T>0 there exist two real comnstants K and K such that
K < log ¢,(x)(t) <K, xeD[0,»3E ], te[0,T] (4.12)

Therefore, if ¢f(x)(t) = f(X(t))¢1(X)(t), then

T
Tty <Eu >

. T h,A -1 T h,A
sup TR - < ( dnf 17q.’ (y)) "C sup £ q.” () - <f,ut(y)>|) +
te[O,T] 17q 7 (y) <1,ut(y)> t€[0,T} te[O,T]

- T h
+ ( inf <1,pt(y)> inf 1Tq2’A(y)) l( sup |<f,ut(y)>| sup |1 qt’A(y) - <l,ut(y)>l) <
te[O,T] te[0,T] tE[O,T] te0,T ]

<e X E(n¢f(xh’A) - 0 (0, )+ TR e m u¢1(xh’A) - 4,00 ) (4.13)

where -1 _ . stands for the sup norm on [0,T]. Note that we have placed (XE’A),

h>0,A>0 and (Xt) on the same probability space: by the weak convergence assured by
Theorems 2.4 and 3.2 this can be done even assuring that (XE’A(w)) converges to
(Xt(w)) in D[O,w;E] for each w [4]. Being the paths of (Xt) continuous this implies
uniform convergence on each compact set. But f and g are uniformly continuous, so

that the two terms under the expectation sign in (4.13) converge to zero for each w.

By bounded convergence theorem, the proof is accomplished.

The successive step will be to extend the convergence in (4.10) to all possible

14



yeCO[

y, indipendently of A,h, following the steps suggested by Kushner [18] for . the con-

tinuous time case.

h, A
First of all recall that g(Xk; ) is a discrete-time semimartingale with

O,m;Rm]. This is done by showing that (4.7) is Lipschitz on bounded sets w.r.t.

k-1
h,A, h,A h,A
g(X ) = on A 1,;}1,Ag(xjA ) + M (4. 14)
h,A, . . . . .
where (MkA ) is a square integrable martingale with variance process
h,A h,A, h,A k h,A . h,A h,A _ h,A T
M = M (MO + j51 [(M —M(J 1)A)(M - (j~l)A) IXM, 245 ]
whose (i,%)-th element is given by
h,Ah,A k-1 h, A
s s — 3 —
My iMooy T J__‘z_: (4, A58 )(x ) gy (K DA 480) (X500
h, A -
g (XA 8y )(x 15 BAL 8y )(x % (8, a%g )( ) (4.15)
We assume from now on that for some real K
m
z (HAhg I+ z I Ah(o g YE) < K, h0 (4.16)

i j=

Note that such condition is satisfied if the core S in Theorem 2.4 is an algebra and

g; belongs to S, i=1,...,m.
Now integrating by parts in (4.7) and using (4.14)

k-1

oo = mlrog et aemext ) ) - I branEah® - sty
A h A h, A h,A k-1
- 5 ls( )I D1 =ele ) Yexp(y (kB)g(X 21y ,) = o 250 Iy (2)(a, Ag)(X(z At
1 2, b h,A _  h,A
7 e 1 - 2y e ” - Miao 1)A)] (4.17)
2=0

15



THEOREM 4.3. Under the condition (4.16), for each f bounded and uniformly con-
tinuous, for each T>0 and R>0 there exists a counstant C>0 independent of A and h,
such that

T, h,A h, A — — '
sup £ (p > () = p TGN < cly (4.18)
te[0,T] ’

for nyum,T < R and W§um,T < R.

Proof. With the same argument of the proof of Theorem 4.2 we can reduce to prove

h h
(4.18) with qt’A replacing pt’A provided we show that for iyl . < R and k<[T/A]

T
3
there exists positive constants Kl and KZ such that
k-1
T h,A  h,A
Kl < E exp(gzo y (QA)<M2A M(Q—I)A)) < K2. (4.19)
For this we have to note that
h, A k T h,A h,A
3 & b — b
NkA Iy (JZ,A)(MZA M(l—l)A) (4.20)
2=0
is a square integrable martingale with variance process
h,A k T h,A h,A
N7 OkA = 3y (LAKM 2T - <M P> Yy (24A) (4.21)
=0 L4 (£-1)a

which is uniformly bounded by (4.15) and (4.16),.for Iyt T < R and k <[T/A]- Now it

3

suffices to recall Theorem 69 in [23], which states that for some ¢c>0 and Ae€R,

exp(AcNE&A - (e|x|—1—x)cz<Nh’A>

h,A
kA

cess, (4.19) holds.

kA) is a martingale. The constant c is used to make

increments of (N ) bounded by 1. By the uniform boundedness of the variance pro—

Z VA VA A

, . 12 1 2
Finally observe that, being Ie e Iglzl—z2|(e +e “), by applying Schwartz

inequality the following holds for any pair of random variables Zl and 22

16



Z Z 27 222

E(e b_e 2) < {2E(Z1 - Z2)2E(e Lye )}l/2 (4.21)

which reduces the theorem to prove that

K-1
- T_, h,A - T, sy _  h,A 2
tES[BpT] E{(y(ka)-y(ka)) g(x(k_l)A) - 250 (y(ka) = y(kn) (g(X 75 g(x(z_l)A)]
—,2
Hiy-y I '
& (4.22)
-1

because the exponential terms can be bounded in mean as above (take A = 2c ). The
inequality (4.22) is readily obtained by (4.14), (4.15), (4.16) and (4.21).

Now Theorem 2.4 can be strengthened to give the desired result.

COROLLARY 4.1. 1If conditions (2.6) and (4.16) are satisfied, and if pg converges

weakly to the law of X as h»>0, then for each yeCO[O,m;Rm], for each ™0 and £

O’
bounded and uniformly continuous, the convergence in (4.10) holds.

Proof. With the same arguments of the previous theorem, but in continuous time (see
the remark following (4.3)) it is shown that the Lipschitz estimate can be

1

established for Ht(y), too [5]. This fact and the denseness of CO[O,T;Rm] in

CO[O,T;Rm] give immediately the result.

17



5. ROBUSTNESS AND WEAK CONVERGENCE
Let us resume the results of the previous section in the following way. Let us
fix any f bounded and uniformly continuous on E and let us define continuous func-—

A

tions w?’ : CO[O,w;Rm] + D[O,w} by

R CO YO NIl N € (5.1)

These converge, as (h,A) » 0 to the continuous function wf: CO[O,w;Rm] > C[O,w]
defined by

ve(y) () = <f,m (y)> (5.2)

uniformly on compact intervals of time (which implies D[O,w] - convergence),
uniformly on bounded sets in CO[O,w;Rm], by Theorem 4.3 and Corollary 4.1.
Now we need to consider Ht(y) and p?’A(y) as measure-valued processes.

First of all, the space P(E) of probability measures on E is metrized by

o <o P> = <o.,00 |

a,(P,Q) = ) 2 (5.3)
1 ie1 u¢iu

where {¢i} is a countable dense set in é(E). Convergence in this metric is
equivalent to weak convergence, given that é(E) is convergence determining if E
is locally compact. Now let D[O,w;17(E)] be the set of cadlag probability-
valued functions on the half line (w.r.t. dl) on which the metric given in [16] is
considered. We will only recall that uniform convergence on compact intervals

of time to a continuous function implies convergence in such a metric. It is
almost clear that the maps

n: ¢, [0,=5E] + C[0,=,P(E) ] | (5.4)

O[

h
P ’A: CO[O,w;Rm] > D[O,w;P(E)] (5.5)

h
are continuous and that p ’A(y) converges to I (y), as (h,A) » O, uniformly on

bounded subsets of CO[O,m;Rm]. Being the metric given by (5.3), these assertions
18



are reduced to the corresponding ones for wth(y) and ¢

¢1 ¢

This allows to solve the following “robustness™ problem. Let us consider

_(y), i=1,2,000 &
i

continuous processes (if,wi), e > 0, considered as C[O,W;E] X CO[O,w;Rm] - valued
random variables, which are a family of "physical” state and noise models
depending on some parameter, converging to the "ideal” diffusion plus white
noise model of the Introduction (i£,wt) as this parameter degenerates. The
typical situations to have in mind are carefully reviewed in [17]. Note that

the output map defined in (1.1) is defined on each sample path (X,W) of the

state and noise processes, yielding a continuous map

y: C[0,%;E] x C.[0,=;R"] » C_[0,=;R" ] (5.6)

0 0

with all the spaces endowed with the metric of uniform convergence on compact
intervals.

The approximate filter (5.5) is applied to the "physical” output process
Y® = y(ie,we). The following result extends the similar oune proved by Kushner

[20] for one particular chain in continuous time, in the meantime giving a more

direct proof in that unnormalized conditional probabilities are not used.

THEOREM 5.1. Let us suppose that (ii,wi) converges weakly to (it,wt) as
£ + 0, where (it) is a continuous E-valued Feller-Dynkin process and (wt) an

independent R"-valued standard Brownian motion. Then, under the hypotheses of

€ h

s A L E =
¢ 2 Pe (Y7)) converges weakly to (Xt,Wt,Ht(Y)) as

Corollary 4.1, the process (if,w

(e,h,A) + 0, considered as C[O,w;E] x C [O,w;Rm] X D[O,W;P(E)J - valued random

0

variables.

Proof. For ¢ > 0, h > 0, A > 0, define the functions

xR 0,058 ] x € [0,mR"] » c[0,=5E] x Cy[0,%5R™ ] x D[0,=;P(E) |

AT W = e Ay E ) (5.7)

19



and y, with the same domain and range space, defined by

x(x,w) = (x,w, I(y(x,w))). (5.8)
—€,h - h,A
Let X°° b X~ and W0 = Wb, By the remarks following Corollary 4.1,
g,h, A . . . .
X converges to ¥ uniformly on compact sets. Being y continuous, it

suffices to to apply Theorem 5.5 in [3] to get the desired result.

A comprehensive aiscussion of the meaning of weak convergence—-type results
like Theorem 5.1 is given in [15]. However, again, the important thing is to
note that the way e,h,A approach zero cannot destroy convergence. We believe

that those results could be of particular importance for sequential decision

problems on partially observed diffusions [1].
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6. TWO EXAMPLES

Let us first consider the chain proposed by Kushner, which is obtained by
suitably modifying a simple difference scheme applied to the generator of a dif-
fusion [17]. We limit ourselves to the one-dimensional case in which such a
scheme always works.

Let Cs(ék) the space of k-times continuously differentiable function on R,
with all those derivatives bounded (which go to zeroc at infinity). Let (i;) be
the solution of the martingale problem with full generator

~ 1 Bzf of 2
(Af) (x) = E—a(x) 3;——(x) + b(x) 5;—(x) . fer
(6.1)
where it must be supposed that a(x) > X > 0 for xeR and a(*) and b(*) are bounded and
Holder, in order to have a well-posed martingale problem [28]and the restriction

A of & to Ci[Té to be extendible to a generator of a Feller-Dynkin semigroup on

6 [6]. But we need also to use 62 as a core, and for 62 to be invariant under
eAt, a(*) and b(*) have to be also in C2 In this case, the parabolic equation

b
(8/3t — A)f = 0 can be differentiated twice w.r.t. the space variable [26].

For each h > 0, let us consider a finite grid G

h of equispaced points of

distance h, which tends to cover the whole line as h +» 0, and define a Markov

chain on G, by the following non-zero intensities: for xeGh

b

al(x,x-h) = ;11—2 a(x) ++ b (%)

"% = = L a0 - £ b0 | (6.2)
2h

al(x,x+h) = —— a(x) + % b (x)

2h
except for the first and the last point of the grid, which are made absorbent.

Let ny be the inclusion of G, into R, and let Ph be defined as in Section 4.

h
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It is clear that condition (2.6) is satisfied once we show that for feéz

2
sup % a(x) i—g— + b(x) —g—f); - (—1—7 a(x) + % b (x))f(x~h) + ( 12 a(x) +-}l; [bGO | £(x) +
xeR Ix 2h 2h

- Ly al) + £ BTEEGH) | < 8(h) (6.3)

2h

where §(h) goes to zero as h + 0. The behavior at the boundary is controlled by
the boundedness assumptions on a and b and the fact that feéz. The expression

of the r.h.s. of (6.3) can be rewritten as

(x) 2 b (x)

a g (f(x+h) + f(x-h) - 2f(x) - £f"(x)h")) + hx (F(x+h) - f(x) - £'(x)h) +
2h
-2 (s(xen) - £(0) - £ GOR)

which clearly shows uniform convergence (f" is in fact uniformly continuous).
Moreover, for any geCﬁ, the boundedness condition (4.16) is verified, and
Corollary 4.1 and Theorem 5.1 can be applied.

Such method can be extended to the case Rd, d > 1, with additional assump-—
tions on the coefficients [17]. The verification of conditions (2.7) and (4.9)
is still straightforward. It is clear that the method could take into account
boundary conditions, too.

Example 2. This example is not directly relevant for filtering theory, but
it comes out from the growing field of simulated annealing [9]. By simplicity, we
take d = 1 as before and suppose that a = 1 and b = -3V/3x in (6.1), where V is some

“potential™ on R. The grid Gh is fixed as before but:

gh(x,xih) = 12 exp{—Z[V(xih) - V(x)]+},'§h(x,x) = —(ah(x,x~h) + ah(x,x+h)) (6.4)
2h

and the other terms are zero (including the boundary ones). Condition (2.6) is
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reduced to check that the following is o(hz), uniformly on R.

|exp{—2

<| £(x+h) -f(x-h)-2f(x)-h

[V(x-h)=V(x) ] }(E(x=h) ~£(x) yrexp {~2 [V(x+h) ~V(x) | }(£+h) ~£(x))~h (5 - 2
ax

2
2 3 L +2| (v () =¥Ch) ) CE () =£ (a0 )V (xth) —9(x)) T

(£(x+h)-£(x) )-h> 2L Bf |+o(h?)

from which the result follows for any feéz. Moreover,

ness condition (4.16) is satisfied for any geC,

9%

so that the convergence of the

filtering algorithm derived from (6.4) is established.

23
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